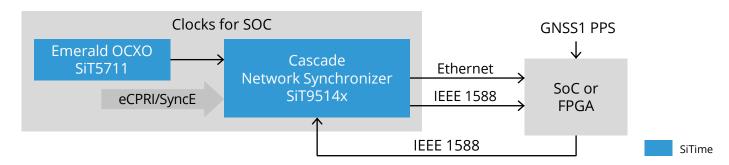


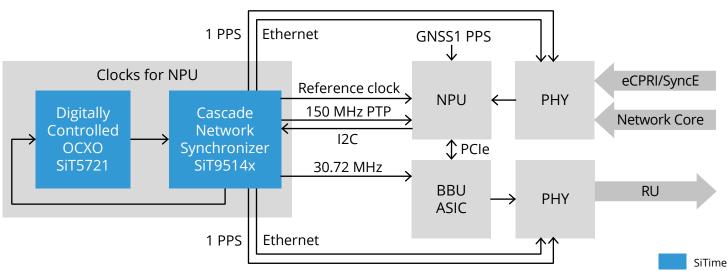
SiTime MEMS Timing Benefits

Complete MEMS clock tree

- Precision MEMS OCXO
- 4 input network synchronizer
- Integrated MEMS eliminate quartz reliability issues


Most robust in real world conditions

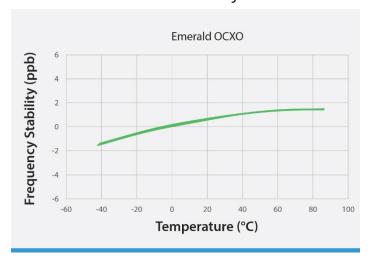
- ±40 ppt/°C dF/dT for accurate IEEE 1588
- I²C monitoring for simplified compensation
- · Immunity to board level noise


Easily configurable clocking

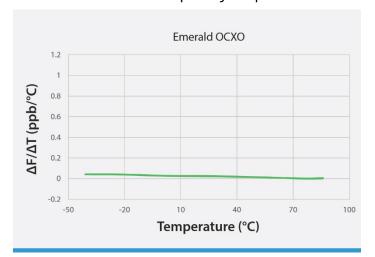
- Hitless switching for minimal disruptions
- Flexibility of 4 independent time domains
- Low wander mode for optimal holdover

Clock Tree for Open RAN with IEEE 1588

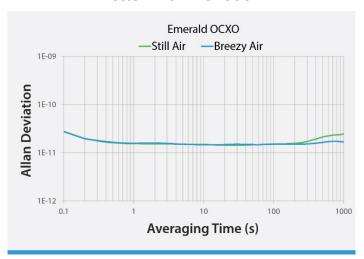
Clock Tree for NPU Based Open RAN DU

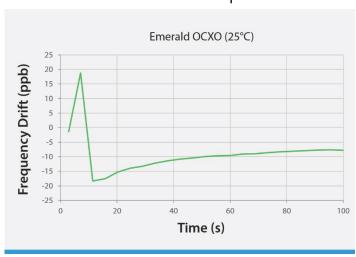


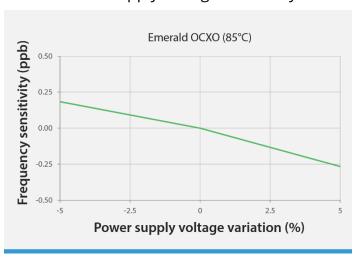
Application	Devices	Туре	Function	Key Features
Distributed Unit	<u>SiT5711</u>	OCXO	Stability Engine for IEEE 1588 Clock Recovery	1 to 60 MHz, ±5 ppb, ±40 ppt/°C dF/dT
	<u>SiT5721</u>	Digitally Controlled OCXO		1 to 60 MHz, ±40 ppt/°C dF/dT, I²C Programmable
	<u>SiT95147</u>	Network Synchronizer	Monitor SyncE and eCPRI inputs, facilitate IEEE 1588 loop	8 KHz to 2.1 GHz, 120 fs jitter for SyncE, 4 inputs and 8 outputs
	<u>SiT95148</u>			8 KHz to 2.1 GHz, 120 fs jitter for SyncE, 4 inputs and 11 outputs

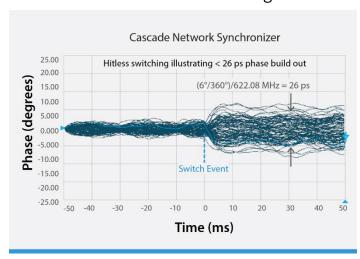

Si Time

MEMS Timing Outperforms Quartz


Better Stability


Better Frequency Slope


Better Allan Deviation


Faster Warm Up

Lower Supply Voltage Sensitivity

Fastest Hitless Switching

