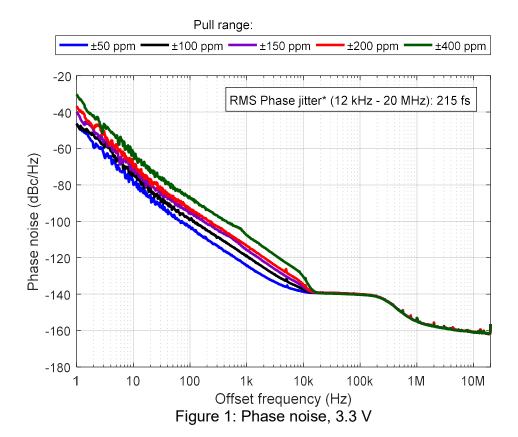


Title:	Performance report for SiT3372, 74.25 MHz, LVDS		
Type:	Performance report Rev: 1.2		
Orig:		Date:	September 12, 2018


Performance report for SiT3372 - 74.25 MHz, LVDS

This performance report contains the following data:

- Phase noise
- Random phase jitter
- Output waveforms
- Pull range linearity
- Frequency stability over temperature
- Period jitter
- Duty cycle
- Rise/Fall time
- Amplitude
- Current consumption

Title:	Performance report for SiT3372, 74.25 MHz, LVDS			
Type:	Performance report Rev: 1.2			
Orig:		Date:	September 12, 2018	

*Integrated phase jitter value applies for ±50 ppm to ±400 ppm pull ranges

Table 1: Phase noise

Phase noise dBc/Hz					
Frequency offset	Pull range (ppm)				
(Hz)	±50	±100	±150	±200	±400
1	-46.2	-46.5	-39.8	-36.7	-30.2
10	-79.8	-74.9	-70.1	-70.5	-62.1
100	-103.1	-99.0	-94.8	-93.4	-87.1
1 K	-124.5	-118.8	-115.5	-113.4	-107.7
10 K	-138.6	-137.4	-136.1	-134.7	-130.5
100 K	-140.3	-140.1	-140.1	-140.1	-140.3
1 M	-154.8	-154.8	-154.8	-154.8	-153.0
10 M	-161.0	-160.8	-161.0	-161.0	-160.9
20 M	-156.6	-156.4	-156.6	-156.6	-156.5

5451 Patrick Henry Drive, Santa Clara, California 95054 • 408.328.4400 • sitime.com

Page 2 of 10

Title:	Performance report for SiT3372, 74.25 MHz, LVDS			
Type:	Performance report Rev: 1.2			
Orig:		Date:	September 12, 2018	

Table 2: Integrated Phase jitter

remove the greatest remove justice			
Darameter	Units	Pull range (ppm)	
Parameter	Ullits	±50 to ±400	
Integrated Phase jitter (1.875 MHz - 20 MHz)	fs, rms	124	
Integrated Phase jitter (12 kHz - 20 MHz)	fs, rms	215	

Title:	Performance report for SiT3372, 74.25 MHz, LVDS			
Type:	Performance report Rev: 1.2			
Orig:		Date:	September 12, 2018	

Figure 2: Output waveform, 2.5 V

Figure 3: Output waveform, 3.3 V

5451 Patrick Henry Drive, Santa Clara, California 95054 • 408.328.4400 • sitime.com

Page 4 of 10

Title:	Performance report for SiT3372, 74.25 MHz, LVDS			
Type:	Performance report Rev: 1.2			
Orig:		Date:	September 12, 2018	

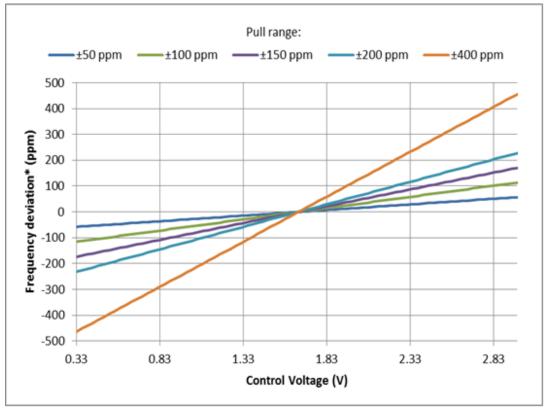


Figure 4: Frequency pull characteristic

Title:	Performance report for SiT3372, 74.25 MHz, LVDS		
Type:	Performance report	Rev:	1.2
Orig:		Date:	September 12, 2018

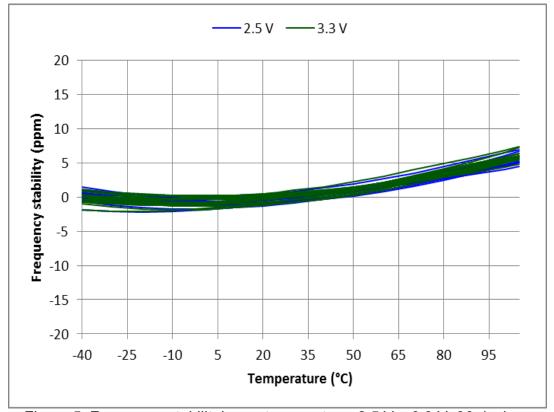


Figure 5: Frequency stability* over temperature, 2.5 V – 3.3 V, 30 devices

*SiT3372 frequency stability is independent of output frequency.

Title:	Performance report for SiT3372, 74.25 MHz, LVDS		
Type:	Performance report Rev: 1.2		
Orig:		Date:	September 12, 2018

Table 3: Summary performance data

Parameter	Units	Voltage		
Parameter	UTILS	2.5 V	3.3 V	
Period jitter	ps, rms	0.80	0.76	
Period jitter (sample size 10,000 cycles)	ps, pk-pk	5.97	5.96	
Duty cycle	%	50.0	50.0	
Rise time (20% - 80%)	ps	336	335	
Fall time (80% - 20%)	ps	324	324	
Differential voltage swing	V	0.68	0.69	
Current consumption (no load, output enabled)	mA	74.4	74.4	
Current consumption (no load, output disabled)	mA	58.3	58.3	

Title:	Performance report for SiT3372, 74.25 MHz, LVDS			
Type:	Performance report Rev: 1.2			
Orig:		Date:	September 12, 2018	

Test description

Conditions:

Frequency: 74.25 MHzVDD: 2.5 V, 3.3 V

- Pull range: ±50 ppm, ±100 ppm, ±150 ppm, ±200 ppm, ±400 ppm

- Temperature: 25 °C

Equipment:

Model	Measurement / Purpose
Keysight DSA90604A (6 GHz,	Period jitter, output amplitude, rise/fall time,
20 Gsps)	duty cycle
Keysight 5052B Signal Source	Phase noise, integrated phase jitter
Analyzer	
Keysight 34980A	Power supply current
Keysight E3631A	Power supply
Keysight 53230A	Frequency

Title:	Performance report for SiT3372, 74.25 MHz, LVDS		
Type:	Performance report	Rev:	1.2
Orig:		Date:	September 12, 2018

Setup

Waveform

For waveform parameters measurement (rise/fall time, differential swing, duty cycle), both DUT outputs are terminated with 100 Ω differential. Output signals are measured using Keysight 1134B active probe with Keysight N5425B probe head. All measurements are applied to the differential waveform. Figure 6 shows test setup diagram for waveform parameters measurement.

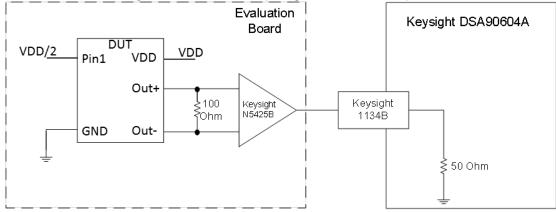


Figure 6. Test setup for measuring waveform parameters (rise/fall time, differential swing, duty cycle)

Period Jitter

For period jitter measurement outputs are connected through AC-coupling capacitors to the oscilloscope channels. Signals are subtracted inside the oscilloscope. All measurements applied to differential waveform. Figure 7 shows test setup diagram for period jitter measurement.

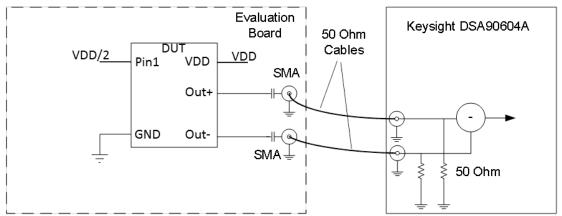
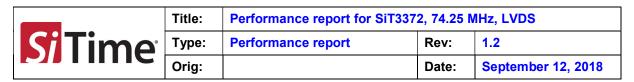



Figure 7. Test setup for measuring period jitter

Phase noise

For phase noise measurements, differential signal is converted to single-ended using impedance matching transformer. Transformer's output is connected to measurement instrument. Figure 8 shows test setup diagram for phase noise measurement.

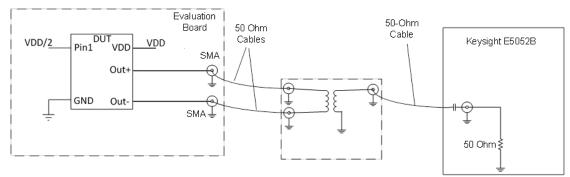


Figure 8. Test setup for measuring phase noise.

Current consumption

For Current consumption measurement device output is floating. For frequency measurement differential-to-single-ended converter is used.