		Performance report for SiT9387, 250 MHz, LVDS		
	Type:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

Performance report for SiT9387 - 250 MHz, LVDS

Conditions:

- Frequency 250 MHz
- VDD: 2.5 V, 3.3 V
- Room temperature
- Termination:
 - \circ 100 Ω between both outputs.

Equipment:

Model	Measurement / Purpose
Keysight DSA90604A (6 GHz,	Period jitter, differential voltage swing, rise/fall
20 Gsps)	time, duty cycle
Keysight 5052B Signal Source	Phase noise, integrated phase jitter
Analyzer	
Keysight 34980A	Power supply current
Keysight E3631A	Power supply
Keysight 53230A	Frequency

Test setup:

For waveform parameters measurement (rise/fall time, differential swing, duty cycle), both DUT outputs are terminated with 100 Ω differential. Output signals are measured using Keysight 1134B active probe with Keysight N5425B probe head. All measurements are applied to the differential waveform. Figure 1 shows test setup diagram for waveform parameters measurement.

5451 Patrick Henry Drive	, Santa Clara,	California 95054	• 408.328.4400	 sitime.com
--------------------------	----------------	------------------	----------------	--------------------------------

		Performance report for SiT9387, 250 MHz, LVDS		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

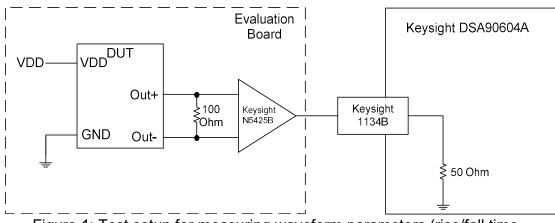


Figure 1: Test setup for measuring waveform parameters (rise/fall time, differential swing, duty cycle)

For period jitter measurement outputs are connected through AC-coupling capacitors to the oscilloscope channels. Signals are subtracted inside the oscilloscope. All measurements applied to differential waveform. Figure 2 shows test setup diagram for period jitter measurement.

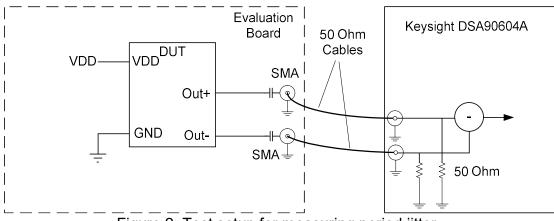


Figure 2: Test setup for measuring period jitter

For phase noise measurements, differential signal is converted to single-ended using impedance matching transformer. Transformer's output is connected to measurement instrument. Figure 3 shows test setup diagram for phase noise measurement.

5451 Patrick Henry Drive, Santa Clara,	California 95054 • 408.328.4400 • sitime.com	
--	--	--

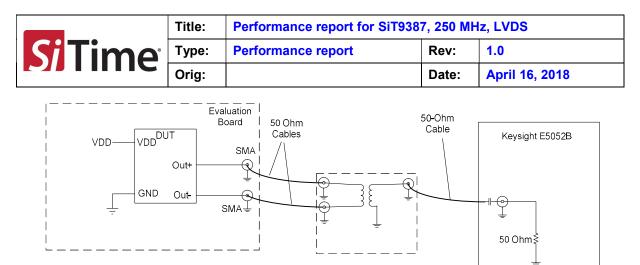


Figure 3: Test setup for measuring phase noise.

For IDD measurement device output is floating. For frequency measurement differential-to-single-ended converter is used.

Data:

- Phase noise
- Integrated phase jitter
- RMS period jitter
- Peak-to-peak period jitter
- Rise/fall time
- Duty cycle
- Differential output swing
- IDD
- Frequency stability over temperature

Parameter		Voltage	
		2.5 V	3.3 V
Integrated Phase jitter (1.875 MHz - 20 MHz)	fs, rms	86	87
Integrated Phase jitter (12 kHz - 20 MHz)	fs, rms	209	214
Period jitter	ps, rms	0.75	0.78
Period jitter (10,000 cycles)	ps, pk-pk	6.06	5.95
Duty cycle	%	49.8	49.6
Rise time (20% - 80%)	ps	377	377
Fall time (80% - 20%)	ps	374	379
Differential voltage swing	V	0.83	0.85
Current consumption (no load, output enabled)	mA	67.8	68.3
Current consumption (no load, output disabled)	mA	49.9	50.4

Table 1: Summary performance data

5451 Patrick Henry Drive, Santa Clara, California 95054	• 408.328.4400 • sitime.com
---	-----------------------------

		Performance report for SiT9387, 250 MHz, LVDS		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

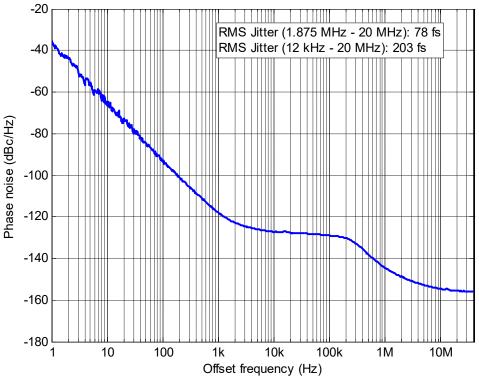


Figure 4: Phase noise, 2.5 V

5451 Patrick Henry Drive, Santa Clara, California 95054	• 408.328.4400 • sitime.com
---	-----------------------------

		Performance report for SiT9387, 250 MHz, LVDS		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

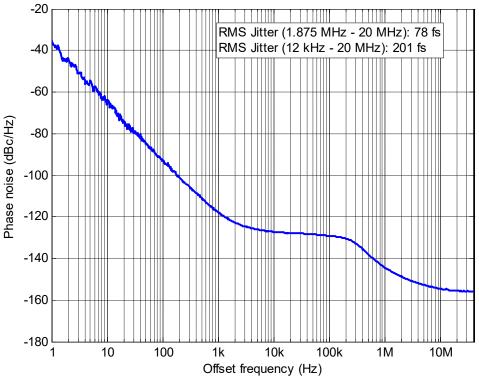


Figure 5: Phase noise, 3.3 V

5451 Patrick Henry Drive, Santa Clara, California 95054	• 408.328.4400 • sitime.com
---	-----------------------------

		Performance report for SiT9387, 250 MHz, LVDS		
SiTime	Type:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

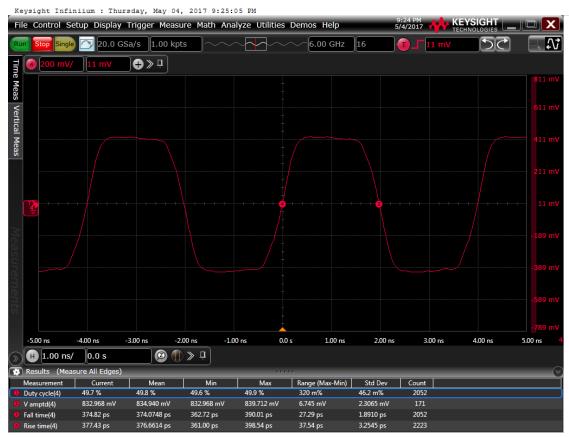


Figure 6: Output waveform, 2.5 V

5451 Patrick Henry Drive, Santa Clara, Ca	ifornia 95054 • 408.328.4400 • sitime.com
---	---

		Performance report for SiT9387, 250 MHz, LVDS		z, LVDS
SiTime	Type:	Performance report	Rev:	1.0
Si Time Type: Orig:		Date:	April 16, 2018	

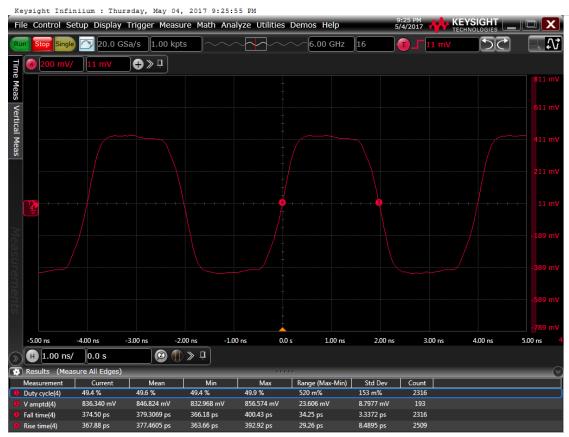
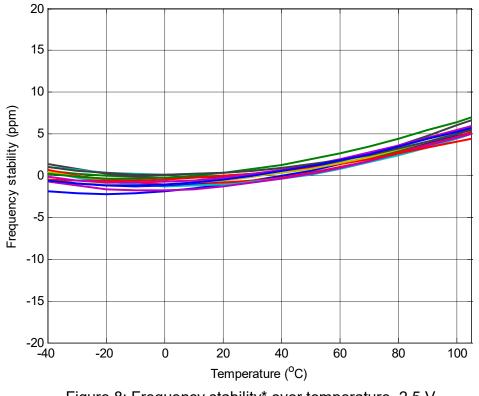
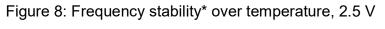




Figure 7: Output waveform, 3.3 V

		Performance report for SiT9387, 250 MHz, LVDS		lz, LVDS
S ¹ Time	Type:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

*SiT9387 frequency stability is independent of output frequency.

5451 Patrick Henry Drive, Santa Clara, California 95054	• 408.328.4400 • sitime.com
---	-----------------------------

		Performance report for SiT9387, 250 MHz, LVDS		z, LVDS
Si Time	Type:	Performance report	Rev:	1.0
	Orig:		Date:	April 16, 2018

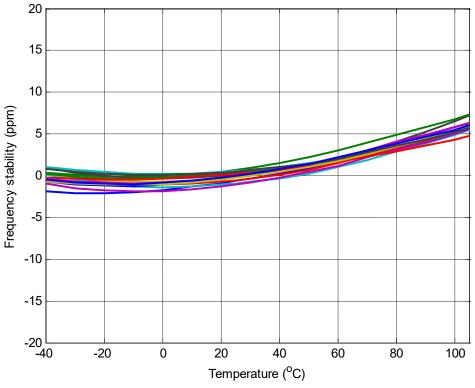


Figure 9: Frequency stability over temperature, 3.3 V

5451 Patrick Henry Drive, Santa Clara, California 95054	• 408.328.4400 • sitime.com
---	-----------------------------