

SiTime University Turbo Seminar Series

December 2012 Reliability & Resilience

Agenda

- SiTime's Silicon MEMS Oscillator Construction
 - Built for High-Volume Mass Production
- Best Electro-Magnetic Susceptibility (EMS) Performance
- Best Power-Supply Noise Rejection
- Best Resistance to Shock and Vibration
- World Class Reliability

MEMS Resonators For All Clocking

5 MHz Resonator

- 5MHz resonator
- In production since 2007

48 MHz Resonator

- <1ps phase jitter</p>
- In production since 2011

524 kHz Resonator

- For timekeeping, RTC
- In production since 2010

SiTime's MEMS Oscillator has the Most Flexible System Architecture

Resilience Performance

Best Electro-Magnetic Susceptibility (EMS) Performance

EMS vs EMI

We are analyzing the oscillator's susceptibility to electro-magnetic radiated fields (EMS)

EM-Field Produced by Component

Radiated EM-Field from External Sources (Other ICs, modules, etc.)

EMIElectro-Magnetic
Interference

EMS
Electro-Magnetic
Susceptibility

EMS Test Setup

Best EMS Performance -- LVCMOS

Best EMS Performance – LVDS/LVPECL **SiTime***

How SiTime Delivers the Best EMS Performance

- Design & MEMS Structure
 - Differential architecture for best common mode rejection
 - No sensitive, high-impedance nodes
 - MEMS ultra-small resonator size minimizes antenna pick-up effects compared to larger quartz resonator
- SiTime's MEMS Resonators are Electrostatically Driven—Inherently Immune to EMI
 - Quartz Devices are Piezoelectric and are More Susceptible to EMI

- Definition of EMS
 - EMS is a measure of the timing device's immunity to radiated EMI sources from other electronic components

Best Power-Supply Noise Rejection

Best Power-Supply Noise Rejection--LVCMOS

How SiTime Delivers the Best Power-Supply Noise Rejection

- Best Oscillator Circuit Design
 - Differential Design for Best Common Mode Rejection
 - 2 Layers of Linear Regulation for Best Supply Noise Immunity
 - Internal Bypass Decoupling for High-Freq. Noise Filtering
- 100% In-House Mixed-Signal Design (not available from quartz)
 - Continuous improvement and optimization

- Definition of Power Supply Noise Rejection and test condition
 - Noise on the power supply increases jitter on the clock output. The ability of a timing device to reject this
 power supply noise is Power Supply Noise Immunity
 - 50mVpp noise injected onto power supply, changing freq. DUT Vdd supply bypassed with 0.1μF//10μF

Best Shock and Vibration Performance

Mechanical Shock Test Setup

Best Performance Under Shock — LVCMOS (500 g)

MIL-STD-883F Method 2002, condition A: half sine wave shock pulse, 500 g, 1ms.

Best Performance Under Shock — LVDS/LVPECL (500 g)

MIL-STD-883F Method 2002, condition A: half sine wave shock pulse, 500 g, 1ms

Random Vibration Test Setup

Best Phase Jitter Performance Under Vibration – LVDS/LVPECL

Random vibration profile: MIL-STD-883F Method 2026, Condition B at 7.5g rms. Data plot shows the induced jitter under vibration. Initial phase jitter (no vibe) is subtracted.

Best Phase Jitter Performance Under Random Vibration

Best Stability Performance Under Vibration—LVCMOS & LVDS/LVPECL

ppb/g error is calculated from the measured phase noise spurs at different vibration frequencies.

SiTime Delivers 0.1ppb/g Performance in a Plastic Package

- Putting 0.1pppb/g sensitivity in perspective
- Quartz requires very specialized packaging to achieve low G-sensitivity performance.
- All SiTime parts are highly resistant to shock and vibration in a standard plastic package—no special packaging requirements!

What Makes SiTime's Silicon MEMS Reliability and Resilience Superior?

SiTime's Silicon MEMS XO vs. Quartz XO Time

Functionally Similar...

...But Different!

- Ø Both Require a Resonator...
- Ø Both Require an Oscillator Die...

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

1. The resonator moving mass is extremely small à Large acceleration needed to cause sufficiently large force

SiTime MEMS Resonator Mass is 1000-to-3000 Times Smaller Than Quartz!

Silicon MEMS Resonator Mass Independent of Package

Quartz Resonator Mass Varies with Pkg Size

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

- 2. The resonator structure operates like a very stiff springà Very difficult to affect through external force.
 - >1M *g* needed before resonator touches any surfaces. 55,000 times greater than a Howitzer Cannon!

Howitzer
Cannon
Launches a
Ballistic with
a Force of
18k g

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

3. Proprietary Design

- Our Resonators are Designed Specifically for Low Sensitivity to Any External Mechanical Acceleration
- Single-Point, Center Anchored MEMS Resonator Virtually Eliminates Stress Error Sources

Putting it All Together With World Class Reliability

Up to 35X Better Reliability Than Quartz

Summary

- Best EMS Performance Because...
 - Best Mixed-Signal Design Methodology and MEMS structure
 - Electrostatically driven MEMS is more resistant to EMS
- Best Power-Supply Noise Rejection Because...
 - In-House Analog Design Expertise
 - Differential Oscillator Design
- Best Shock & Vibration Because...
 - Smaller and Stiffer MEMS resonator vs Quartz
 - Single-point, Center Anchored MEMS Design
- Best Reliability—Because we are 100% Silicon
 - 500MHr MTBF (2 FIT)

Contact Information

For Questions, contact SiTime Technical Support

Technicalsupport@sitime.com

For Turbo Webinar pdf Downloads on SiTime's Web Site

www.sitime.com/support/sitime-u/turbo-webinars

- •All new webinars will be posted within 1-week
- •For a list of part numbers used for each test, contact SiTime Technical Support at the email address listed above.