	Title:	Performance Report SiT8008B, 14MHz		
Si Time [®]	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

This report contains sample performance data for SiT8008B-14MHz.

Conditions:

- Frequency 14 MHz
- Vdd 1.8V, 2.5V, 2.8V, 3.0V, 3.3V
- Temperature 25℃
- Termination:
 - No load for IDD
 - $\circ~~50\Omega$ to GND for phase noise
 - $\circ \quad 15 pF \text{ for other tests} \quad$

Equipment:

- Agilent DSA90604 oscilloscope (6GHz, 20Gsps)
 - o Period jitter, waveform, rise/fall time, duty cycle, amplitude
- Agilent E5052B Signal Source Analyzer
 - Phase noise, integrated phase jitter
- Power supply current
 - Agilent 34401A DMM

Data:

- Random Phase jitter, Period Jitter, Duty cycle, Rise/Fall time, Amplitude, Idd
- Output waveforms
- Frequency stability versus temperature

Parameter	Units			Voltage		
	Units	1.8 V	2.5 V	2.8 V	3.0 V	3.3 V
Random Phase jitter (900kHz - 5MHz)	ps, rms	0.54	0.57	0.57	0.55	0.55
Random Phase jitter (12kHz - 5MHz)	ps, rms	1.26	1.29	1.27	1.27	1.26
Random Phase jitter (900kHz - 14MHz)*	ps, rms	0.76	0.82	0.80	0.80	0.79
Random Phase jitter (12kHz - 14MHz)*	ps, rms	1.37	1.41	1.39	1.39	1.38
Period jitter	ps, rms	1.94	1.82	1.79	1.75	1.77
Period jitter (10,000 cycles)	ps, pk-pk	14.4	13.3	12.8	12.6	13.0
Duty cycle	%	50.0	49.9	50.1	50.1	50.2
Rise time (20% - 80%)	ns	1.25	1.03	0.94	1.00	0.94
Fall time (80% - 20%)	ns	1.26	0.98	0.91	0.98	0.92
Amplitude	V	1.79	2.48	2.79	3.02	3.30
Current consumption (no load, output enabled)	mA	3.46	3.56	3.60	3.61	3.67
Current consumption (no load, output disabled)	mA	3.37	3.44	3.49	3.52	3.61

Table 1. Performance data

*Calculated by extending the noise floor of the phase noise from 5 MHz to 14 MHz

	Page 1 of 11
The information contained in this document is confidential and proprietar Corporation. Unauthorized reproduction or distribution is prohibit	

Si Time ^{**}	Title:	Performance Report SiT8008B, 14MHz		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

Figure 1. Duty cycle, Rise/Fall time and Amplitude 1.8V

Si Time ^{**}	Title:	Performance Report SiT8008B, 14MHz		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

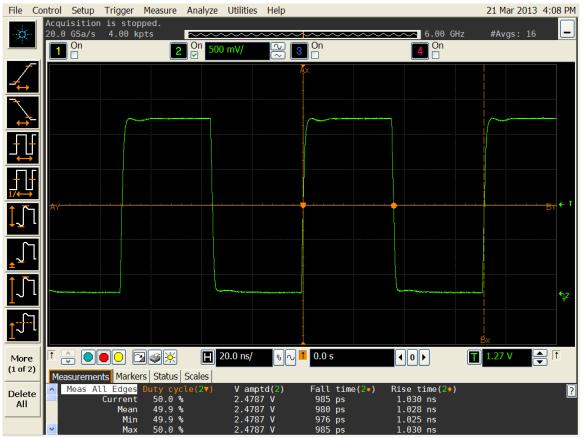


Figure 2. Duty cycle, Rise/Fall time and Amplitude 2.5V

Si Time ^{**}	Title:	Performance Report SiT8008B, 14MHz		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

Figure 3. Duty cycle, Rise/Fall time and Amplitude 2.8V

Si Time ^{**}	Title:	Performance Report SiT8008B, 14MHz		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

Figure 4. Duty cycle, Rise/Fall time and Amplitude 3.0V

Si Time ^{**}	Title:	Performance Report SiT8008B, 14MHz		
	Туре:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

Figure 5. Duty cycle, Rise/Fall time and Amplitude 3.3V

Si Time [®]	Title:	Performance Report SiT8008B, 14MHz		
	Type:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

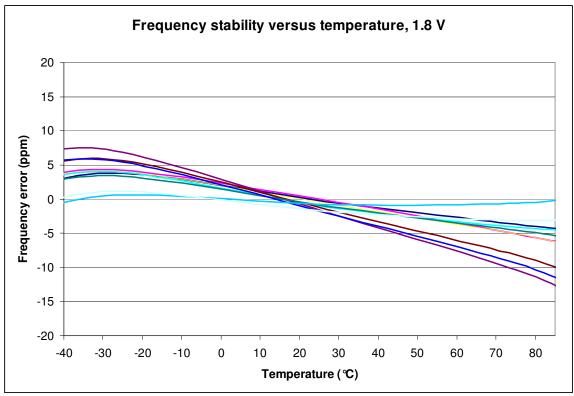


Figure 6. Frequency stability* versus temperature, 1.8 V

*Please note that frequency stability in SiTime devices is not depended on output frequency.

Si Time [®]	Title:	Performance Report SiT8008B, 14MHz		
	Type:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

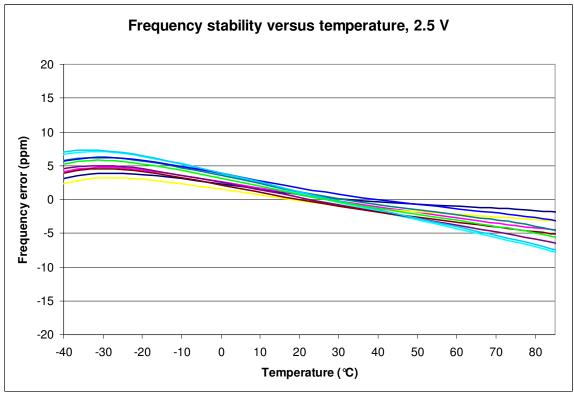


Figure 7. Frequency stability versus temperature, 2.5 V

Page 8 of 11

	Title:	Performance Report SiT8008B, 14MHz		
Si Time [®]	Type:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

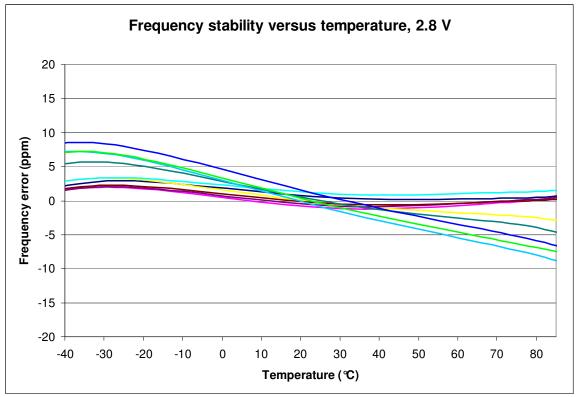


Figure 8. Frequency stability versus temperature, 2.8 V

Si Time [®]	Title:	Performance Report SiT8008B, 14MHz		
	Type:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

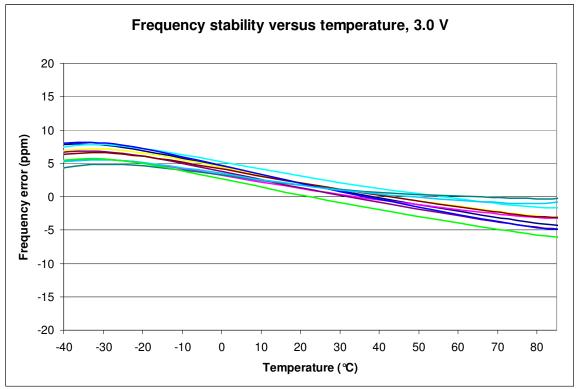


Figure 9. Frequency stability versus temperature, 3.0 V

Page 10 of 11

Si Time [®]	Title:	Performance Report SiT8008B, 14MHz		
	Type:	Performance report	Rev:	1.0
	Orig:		Date:	Mar 31, 2014

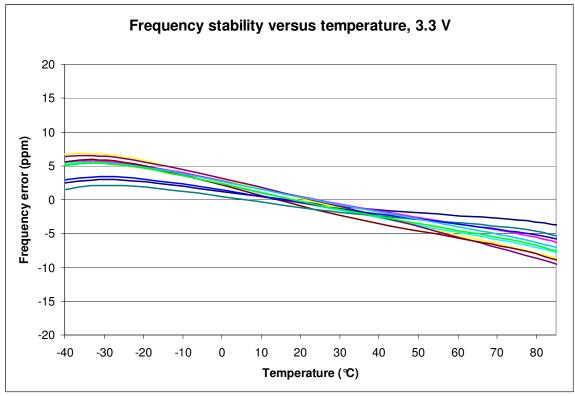


Figure 10. Frequency stability versus temperature, 3.3 V