

SiTime University Turbo Seminar Series

January 14 - 15 Silicon MEMS vs. Quartz

Agenda

- Silicon MEMS Introduction
- Phase Noise
- Frequency Stability
- Aging—Frequency Shift Over Time
- Current Consumption
- Start-up Time
- Reliability & Resilience (covered in Dec webinar)

Where to Locate Archived Webinars and Register for Upcoming Webinars

SiTime's MEMS Oscillator has the Most Flexible System Architecture

Semiconductor Expertise Drove 300x Jitter Improvement in 5 Years

Semiconductor Expertise Driving 250x Stability Improvement in 6 Years

Silicon MEMS vs Quartz Oscillator Phase Noise Performance Comparison

SiTime MEMS 70dB Phase Noise Improvement in 3-Years

- SiTime has improved integrated phase jitter 300x over the last 5 years
- SiTime's more recent oscillators (SiT810x, 820x, 380x, 500x) have MEMS resonators with a Q of 150k.
- SiTime's resonators today have a Q-factor similar to quartz, which translates to phase noise and integrated phase jitter that rivals quartz.

SiTime MEMS vs Quartz XO Phase Noise **SiTime**

Silicon MEMS vs Quartz Oscillator Frequency Stability Performance Comparison

SiTime MEMS has 25x Less Variability Than Quartz

- SiTime guarantees 10ppm stability over temp vs quartz 20ppm
- SiTime XO frequency variability is 25x better than quartz

SiTime MEMS is 25x More Stable Than Quartz

Silicon MEMS vs Quartz Oscillator Aging Performance Comparison

Aging Methodology and Sample Results

MIL-PRF-55310E Compliant

2 Aging Systems

- 1 with oven set at 25 C
- 1 with oven set at 85 C
- 480 DUT capacity in each system
- Package size and vendor diversity
- Continuous frequency measurement
- GPS disciplined frequency reference
- Continuous V_{DD} and temperature monitoring
- UPS power backup

Results

- At 5,100 hours (6+ months), and continuing
- Aging up to 6-months explicitly measured
- 1 year and 20 year aging extrapolated

Sample Population	Sample Size	Nominal Frequency	
SiT 8208/9			
Main population	128	19.2 MHz	
PCB assembly variations	30	19.2 MHz	
Package variations	48	19.2 MHz	
Prior Silicon versions	29	19.2 MHz	
SiT 9120/1/2			
Main population	96	100 MHz	
SIT8103	24	19.2 MHz	
Other SiTime devices	99	10-20 MHz	
Competitors' oscillators	14	25 MHz	
Quartz-based TCXOs (controls)	12	10-25 MHz	

	SiT82	08/9	SiT9120/1/2		
	25C	85C	25C	85C	
6-month aging (ppm)	± 1.3	± 2.4	± 1.3	± 2.4	
1 year aging (ppm)*	± 1.5	± 3	± 2	± 3	
20 year aging (ppm)*	± 3	± 6	± 3	± 6	

SiT8208/9 Aging Data

Best Aging Performance

- For applications that require aging performance, use the SiT8208/9 LVCMOS XO and the SiT9120/1 LVDS/LVPECL
- SiTime breaks out and guarantees aging for 1-yr and 10-yr

First year Aging	F aging	-15	1	+15	PPM	25°C	
10-year Aging	1_uging	-5	_	+5	PPM	25°C	

Mfr	Part Number	Osc Type	Freq	Output	1st yr Aging	10-yr Aging
SiTime	SiT8208AC-22-33E-26.000000	MEMS, XO	26	LVCMOS	1.5 ppm	5 ppm
SiTime	SiT9120AC-1D2-33E156.250000	MEMS, XO	156.25	LVPECL	2 ppm	5 ppm
TXC	7Q-26.000MBG-T	Quartz, TCXO	26	Clipped Sine	1 ppm	NA
Kyocera	KT3225R26000ZAW28TMA	Quartz, TCXO	26	Clipped Sine	1 ppm	NA
NDK	NT3225SA-26.000000MHZ-G8	Quartz, TCXO	26	Clipped Sine	1 ppm	NA
Epson	EG-2102CA 156.2500M-PHPAL3	Quartz, SAW	156.25	LVPECL	10 ppm	NA
TXC	BB-156.250MBE-T	uartz,3rd Overtor	156.25	LVPECL	NA	NA
AVX/Kyocera	KC7050T156.250P30E00	Quartz, SAW	156.25	LVPECL	Inclusive 50 ppm	Inclusive 50 ppm
SiLabs	590AB-BDG	rtz,3rd Overtone	156.25	LVPECL	Inclusive 50 ppm	Inclusive 50 ppm
Discera	ASFLMPLP-156.250MHZ-LR-T	MEMS, XO	156.25	LVPECL	5 ppm	NA

Silicon MEMS vs Quartz Oscillator Power Consumption

LVCMOS Power Consumption

- SiTime XOs are targeting wireline and battery-powered applications
- SiTime consumes approx 2.5 to 3x more supply current than low current quartz alternatives.

Vendor	Part number	Measured Current Consumption (mA, No Load)
SiTime	SiT8208AI-32-33E-25.000000	32.11
SiTime	SiT8002AI-13-33E-25.00000	13.22
SiTime	SiT1602AI-12-33E-25.000000	3.71
Epson	SG-210SCB 25.0000ML3	0.99
Epson	SG-310SCF 25.0000MB3	1.22
Kyocera	KC2520B25.0000C1GE00	1.32
TXC	AU-25.000MBE-T	1.02
Pericom	FNETHE025	1.42

LVPECL/LVDS Power Consumption

Vendor	Part Number	Signal type	Frequency range (MHz)	ldd (mA)
SITime	SiT9120/1/2	LVPECL	1 - 625	69
SITILLE	SiT9120/1/2	LVDS	1- 625	55
	EG2102	LVPECL	100 - 700	100
		LVDS	53.125 - 700	45
Encon	XG2121	LVPECL	100 - 700	60
Epson		LVDS	100 - 700	30
	XG2102	LVPECL	100 - 700	60
		LVDS	100 - 700	30
	DSO323S	LVPECL	13.5 - 212.5	50
KDS		LVDS	13.5 - 212.5	20
KD3	DSO753H	LVPECL	170- 230	80
		LVDS	170- 230	60
	KC7050R-P3	LVPECL	10 - 800	100
Kyocoro	KC7050Y-P3	LVPECL	75 - 700	100
Kyocera	KC7050Y-L2	LVDS	75 - 700	70
	KC7050Y-L3	LVDS	75 - 700	70
NDK	7311S-GF	LVPECL	62.5 - 313	88
NUK	7311S-DF	LVPECL	62.5 - 313	90
	BS Series	LVPECL	150 to 700	80
	BT Series	LVDS		\ /
TXC	CS Series			\
	CT Series			
	SAW based			

- LVPECL always consumes more power (Swing-Load)
- SiTime's LVPECL/LVDS
 Oscillators have competitive
 power

Silicon MEMS vs Quartz Oscillator Start-up Time

Start-up Time up 2x Faster Than Quartz

- 10ms start-up time is the accept standard
- SiTime's start-up time has improved 10x since gen 1 silicon
- Since 2009, SiTime has XOs with competitive start-up times

Vendor	Part number	Start	Gen 1 '06	
vendoi	Part number	Measured	Datasheet MAX	
SiTime	SiT8002AI-13-33E-25.00000	9.73	50	Gen 2 '09
SiTime	SiT8103AI-32-33E-25.000000	7.00	10	2011 New
SiTime	SiT8208AI-32-33E-25.000000	6.93	10	Product
SiTime	SiT1602AI-12-33E-25.000000	3.92	5	110000
Epson	SG-210SCB 25.0000ML3	0.48	3	2012 New
Epson	SG-310SCF 25.0000MB3	1.35	10	Product
Kyocera	KC2520B25.0000C1GE00	0.60	10	
TXC	AU-25.000MBE-T	0.41	10	
Pericom	FNETHE025	0.40	NA	

Summary

- SiTime Oscillators Have Improved Phase Jitter 300x Since 2006
 - SiTime has low phase jitter solutions for wireline networking applications
 - Competitive Phase Noise and Phase Jitter Performance since 2011
 - Wireless Phase noise performance coming in Q3 2013!
- Best Oscillator Frequency Stability Over Temp
 - 25x better frequency variation than quartz
 - 2x better XO stability over temp than quartz

Summary

- SiTime's Start-up Time is up to 2x Faster than Quartz
 - <10ms start-up time since 2009 (similar to quartz)
 - Latest Oscillator starts up within 5ms (SiT1602)
- SiTime Power Consumption is Optimized for Wireline Applications and Select Battery-Powered Apps
 - SiTime offers a 4mA MHz XO. Acceptable for most apps
 - LVDS/LVPECL power consumption similar to quartz

Contact Information

For Questions, contact SiTime Technical Support

Technicalsupport@sitime.com

For Turbo Webinar pdf Downloads on SiTime's Web Site

www.sitime.com/support/sitime-u/turbo-webinars

- •All new webinars will be posted within 1-week
- •For a list of part numbers used for each test, contact SiTime Technical Support at the email address listed above.