

Features

- ±0.2 PPM frequency stability over temperature
- 25 MHz frequency
- Low phase jitter: 0.5 ps RMS (12 kHz to 20 MHz)
- Voltage control option with pull range of ±12.5 PPM (contact SiTime for the Digital Control option)
- LVCMOS/HCMOS compatible output
- SoftEdge[™] configurable rise/fall time control
- Standard 4-pin package: 3.2 x 2.5 mm, 5.0 x 3.2 mm
- Outstanding silicon reliability of 2 FIT, 10 times better than quartz
- Pb-free, RoHs and REACH compliant

Applications

Servers and other high precision applications

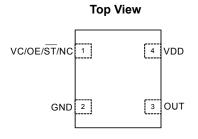
Electrical Characteristics^[1]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Frequency Range							
Output Frequency Range	f	-	25	-	MHz		
Frequency Stability and Aging							
Initial Tolerance	F_init	-1.5	_	1.5	PPM	At 25°C	
Stability Over Temperature	F_stab	-0.20	_	+0.20	PPM		
Supply Voltage	F_vdd	_	0.025	-	PPM	±5% Vdd	
		-100		+100	PPB	0 to 70°C measured with 1°C/2 minute temperature slope.	
Temperature Hysteresis	F_h	-80		+80	PPB	Any 10°C temperature range between 0 to 70°C measured with 1°C/2 minute temperature slope.	
Output Load	F_load	1	0.1	-	PPM	15 pF ±10% of load	
First year Aging	F_1year	-1.5	1	+1.5	PPM	25°C	
10-year Aging	F_10year	-3.5	1	+3.5	PPM	25°C	
Operating Temperature Range	T_use	0	1	+70	°C	Commercial temperature range	
Voltage Control Options							
Pull Range	PR		±12.5		PPM		
Upper Control Voltage	VC_U	Vdd-0.1	1	-	V	All Vdds. Voltage at which maximum deviation is guaranteed.	
Control Voltage Range	VC_L	-	-	0.1	V		
Control Voltage Input	Z_vc	100	-	-	kΩ		
Frequency Change Polarity	-	Positive slope			-		
Control Voltage -3dB Bandwidth	V_BW	-	-	8	kHz		
		S	upply Volta	ge and Pow	er Consun	nption	
Supply Voltage	Vdd	2.97	3.3	3.63	V	Contact SiTime for any other supply voltage options.	
Current Consumption	ldd	1	31	33	mA	No load condition, f = 25 MHz, Vdd = 3.3V.	
			LVCMOS	Output Ch	aracteristic	cs	
Duty Cycle	DC	45	-	55	%	All Vdds	
LVCMOS Rise/Fall Time	Tr. Tf	-	1.5	2	ns	LVCMOS option. Default rise/fall time, All Vdds, 10% - 90% Vdd.	
SoftEdge™ Rise/Fall Time	11, 11	SoftEdge™	™ Rise/Fall 7	Time Table	ns	SoftEdge™ option. Frequency and supply voltage dependent.	
Output Voltage High	VOH	90%	-	-	Vdd	IOH = -7 mA, IOL = 7 mA, (Vdd = 3.3V)	
Output Voltage Low	VOL	-	-	10%	Vdd	IOH = -4 mA, IOL = 4 mA	
			Inp	out Characte	eristics		
Input Voltage High	VIH	70%	-	_	Vdd	For OE or ST input pin.	
Input Voltage Low	VIL	_	_	30%	Vdd		
	-			Startup Ti	me		
Startup Time	T_start	-	-	10	ms	Measured from the time Vdd reaches its rated minimum value.	
				Jitter	•		
RMS Period Jitter	T_jitt	_	1.7	2	ps	f = 25 MHz, Vdd = 3.3V	
RMS Phase Jitter (random)	T_phj	ı	0.6	1	ps	f = 25 MHz, Integration bandwidth = 12 kHz to 20 MHz, All Vdds.	
				•			

Note:

Sunnyvale, CA 94085 Rev. 0.91 Revised August 27, 2013

^{1.} All electrical specifications in the above table are measured with 15pF output load, Contact SiTime for higher drive options.


CS00067AN

±0.2 PPM, 25 MHz MEMS VCTCXO

Pin Configuration

Pin	Symbol	Functionality		
		V control	control Voltage control.	
1 VC/OE/ST/NC		Output Enable		
	Standby H or Open ^[2] : specified frequency output. L: output is low (weak pull down). Device goes to sleep more Supply current reduces to I_std.			
	NC	No connect (input receiver off).		
2	GND	Power	Electrical and case ground.	
3	CLK	Output	Oscillator output.	
4	VDD	Power	Power supply voltage.	

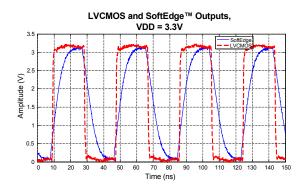
Note

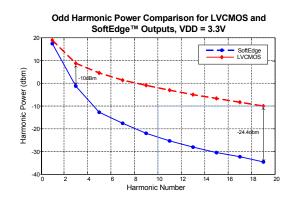
2. A pull-up resistor of <10 k Ω between OE/ \overline{ST} pin and Vdd is recommended in high noise environment when the device operates in OE/ \overline{ST} mode.

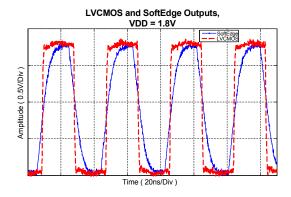
Absolute Maximum

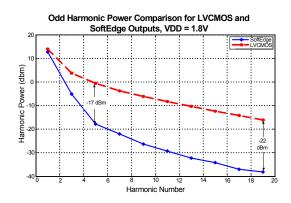
Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

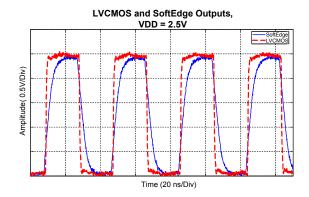
Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge	_	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

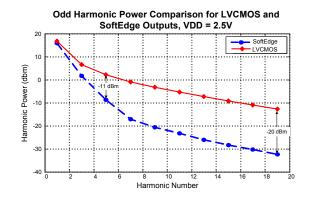

Environmental Compliance

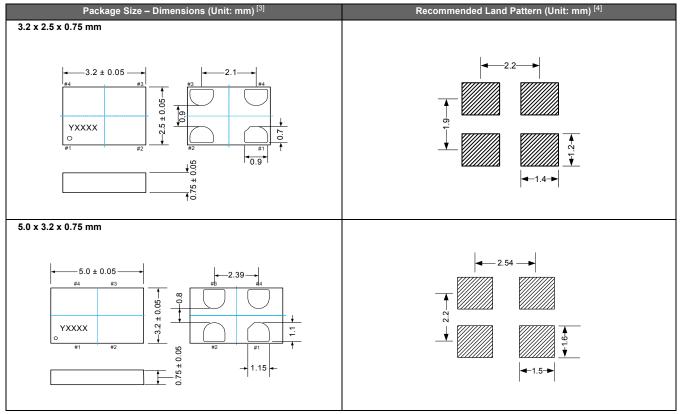

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C




SoftEdge™ Waveform Examples and Corresponding Harmonics Reduction


Figures below illustrate the harmonic power reduction as the rise/fall times are slowed from the standard squarewave output to that of the SoftEdge™ output. In general, the 1.8V device shows the lowest harmonics and provides best EMI performance comparing to devices with higher operating voltages.

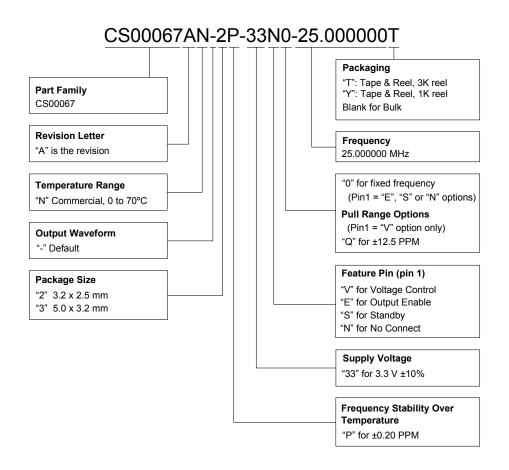




CS00067AN

± 0.2 PPM, 25 MHz MEMS VCTCXO

Dimensions and Patterns


Notes:

- 3. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 4. A capacitor of value 0.1 μF between Vdd and GND is recommended.

CS00067AN ±0.2 PPM, 25 MHz MEMS VCTCXO

Ordering Information

CS00067AN

±0.2 PPM, 25 MHz MEMS VCTCXO

Additional Information

Document	Description	Download Link
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	http://www.sitime.com/component/docman/doc_download/85- manufacturing-notes-for-sitime-oscillators
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
Performance Reports	Additional performance data such as phase noise, current consumption and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes

© SiTime Corporation 2013. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.